
UML Diagram Notes
1

Table of Contents:
UML: 3

Introduction to UML: 3
History of UML: 3
UML diagrams can help engineering teams: 3
Uses of UML: 3
Things to Model: 4

Structure of the code: 4
Behaviour of the code: 4
Function of the code:

4
Class Diagram: 5

Introduction to Class Diagrams: 5
Notation: 5

Naming Convention: 5
Visibility: 6
Inheritance/Generalization and Realization Relationships: 6
Association: 6
Multiplicity: 7
Aggregation: 7
Composition: 7
Dependency: 8
Examples of UML class diagrams: 8
How to draw class diagrams: 9

Summary: 9
Naming Convention: 9
Visibility: 9
Multiplicity: 9
Others: 10

Object Diagram: 11
Naming Convention: 11
Purpose:

11
UML Packages: 12

Introduction: 12
A package in the UML helps: 12
Benefits of UML package diagrams: 12

Terminology: 12
Notation: 13
Criteria for Decomposing a System into Packages: 14
Other Guidelines for Packages: 14
Summary:

15
Component Diagrams: 16

Introduction: 16
Notation: 16
Summary:

Interaction Diagrams: 19



UML Diagram Notes
2

Sequence Diagrams: 21
Introduction: 21
Benefits of a sequence diagram: 22
Drawbacks of a sequence diagram: 22
When to use sequence diagrams: 22
Modelling Control Flow By Time: 22
Style Guide for Sequence Diagrams: 22
Summary:

23
Use Case Diagrams: 24

Introduction: 24
Relationships Between Use Cases: 25
Actor Classes: 25
Describing Use Cases: 26

Typical contents: 26
Documentation style: 26

Finding Use Cases: 26
For each actor, ask the following questions: 26
Summary: 26



UML Diagram Notes
3

UML:
- Introduction to UML:
- Unified Modeling Language (UML) allows us to express the design of a program

before writing any code.
- It is language-independent.
- It is an extremely expressive language.
- UML is a graphical language for visualizing, specifying, constructing, and documenting

information about software-intensive systems.
- UML can be used to develop diagrams and provide programmers with ready-to-use,

expressive modeling examples. Some UML tools can generate program language code
from UML. UML can be used for modeling a system independent of a platform language.

- UML is a picture of an object oriented system. Programming languages are not abstract
enough for object oriented design. UML is an open standard and lots of companies use
it.

- Legal UML is both a descriptive language and a prescriptive language. It is a descriptive
language because it has a rigid formal syntax, like programming languages, and it is a
prescriptive language because it is shaped by usage and convention.

- It’s okay to omit things from UML diagrams if they aren’t needed by the
team/supervisor/instructor.

- History of UML:
- In an effort to promote object oriented designs, three leading object oriented

programming researchers joined forces to combine their languages. They were:
1. Grady Booch (BOOCH)
2. Jim Rumbaugh (OML: object modeling technique)
3. Ivar Jacobsen (OOSE: object oriented software eng)

- They came up with an industry standard in the mid 1990’s.
- UML was originally intended as a design notation and had no modelling associated with

it.
- UML diagrams can help engineering teams:
- Bring new team members or developers switching teams up to speed quickly.
- Navigate source code.
- Plan out new features before any programming takes place.
- Communicate with technical and non-technical audiences more easily.
- Uses of UML:
1. It can be used as a sketch to communicate aspects of the system.
- Forward design: Doing UML before coding.
- Backward design: Doing UML after coding as documentation.
2. It can be used as a blueprint to show a complete design that needs to be implemented.

This is sometimes done with CASE (Computer-Aided Software Engineering) tools. One
of these tools is visual paradigm.

3. It can be used as a programming language.
- Some UML tools can generate program language code from UML.
4. As a sketch:
- Can be used to sketch a high level view of the system.
- Forward engineering: Describes the concepts we need to implement.
- Reverse engineering: Explains how parts of the code work.
5. As a blueprint:
- Should be complete and describes the system in detail.
- Forward engineering: Model as a detailed specification for the programmer.
- Reverse engineering: Model as a code browser.



UML Diagram Notes
4

- Tools provide both forward and reverse engineering to move back and forth between the
program and the code.

6. As a programming language:
- UML diagrams can be automatically compiled into working code using sophisticated

tools, such as Visual Paradigm.
- Things to Model:
- Structure of the code:
- Code dependencies.
- Components and couplings.
- Behaviour of the code:
- Execution traces.
- State machine models of complex objects.
- Function of the code:
- What function does it provide to the user?



UML Diagram Notes
5

Class Diagram:
- Introduction to Class Diagrams:
- A class describes a group of objects with:
- Similar attributes
- Common operations
- Common relationships with other objects
- Common meaning
- A class diagram describes the structure of an object oriented system by showing the

classes in that system and the relationships between the classes. A class diagram also
shows the constraints, and attributes of classes. It displays the system's classes,
attributes, and methods. It is helpful in recognizing the relationship between different
objects as well as classes.
I.e.
A UML class diagram is a picture of:

- The classes in an object oriented system.
- Their fields and methods.
- Connections between the classes that interact or inherit from each other.

- Some things that are not represented in a UML class diagram are:
- Details of how the classes interact with each other.
- Algorithmic details, like how a particular behavior is implemented.

- Note: Coupling between classes must be kept low, while cohesion within a class must
be kept high. Furthermore, we should respect the SOLID principles.

- UML class diagrams cans show:
1. Division of responsibility
2. Subclassing/Inheritance
3. Visibility of objects and methods
4. Aggregation/Composition
5. Interfaces
6. Dependencies

- Notation:
- Naming Convention:
1. Class name
- Use <<interface>> on top of interface names.
- To show that a class is abstract, either italicize the class name or put <<abstract>> on

top of the abstract class name.
2. Data members/Attributes
- The data members section of a class lists each of the class's data members on a

separate line.
- Each line uses this format: attributeName : type

E.g. name : String
- We must underline static attributes.
3. Methods/Operations
- The methods of a class are displayed in a list format, with each method on its own line.
- Each line uses this format:

methodName(param1: type1, param2: type2, ...) : returnType
E.g. distance(p1: Point, p2: Point) : Double

- We may omit setters and getters. However, don’t omit any methods from an interface.
- Furthermore, do not include inherited methods.
- We must underline static methods.



UML Diagram Notes
6

- Visibility:
- − means that it is private.
- + means that it is public.
- # means that it is protected.
- ∼ means that it is a package.
- / means that it is a derived attribute. A derived attribute is an attribute whose value is

produced or computed from other information.
- Note: Everything except / is common for both methods and attributes.
- E.g.

- Inheritance/Generalization and Realization Relationships:
- Generalization/inheritance is when a class extends another class while realization is

when a class implements an interface.
- Generalization represents a “IS-A” relationship.
- Hierarchies are drawn top down with arrows pointing upward to the parent class.

I.e. The parent class is above the child class and the arrow goes from the child class to
the parent class.

- For a class, draw a solid line with a black arrow pointing to the parent class.
- For an abstract class, draw a solid line with a white arrow pointing to the parent abstract

class.
- For an interface, draw a dashed line with a white arrow pointing to the interface.
- E.g.

- Association:
- An association represents a relationship between two classes. It also defines the

multiplicity between objects.
- Association can be represented by a line between the classes with an arrow indicating

the navigation direction.
Note: Sometimes, association can be represented just by a line between the classes.
This means that information can flow in both directions.



UML Diagram Notes
7

- We need the following items to represent association between 2 classes:
1. The multiplicity
2. The name of the relationship
3. The direction of the relationship

- Aggregation, composition and dependency are all types of association.
- Multiplicity:
- * means 0 or more.
- 1 means 1 exactly.
- 2..4 means 2 to 4, inclusive.
- 3..* means 3 or more.
- There are other relationships such as 1-to-1, 1-to-many, many-to-1 and many-to-many.
- Aggregation:
- A special type of association.
- Aggregation implies a relationship where the child class can exist independently of the

parent class. This means that if you remove/delete the parent class, the child class still
exists.
I.e. Aggregation represents a “HAS-A” or “PART-OF” relationship.
E.g. Say we have 2 classes, Teacher (the parent class) and Student (the child class). If
we delete the Teacher class, the Student class still exists.

- Aggregation is symbolized by an arrow with a clear white diamond arrowhead pointing to
the parent class.

- E.g.

- Aggregation is considered as a weak type of association.
- Composition:
- A special type of association. Composition is considered as a strong type of association.
- It is a stronger version of aggregation where if you delete the parent class, then all the

child classes are also deleted.
I.e. Composition represents a “ENTIRELY MADE OF” relationship.
E.g. Say we have 2 classes, House (the parent class) and Room (the child class). If we
delete the House class, the Room class is also deleted.

- Composition is symbolized by an arrow with a black diamond arrowhead pointing to the
parent class.



UML Diagram Notes
8

- E.g.

- Dependency:
- Is a special type of association.
- Dependency indicates a “uses” relationship between two classes. If a change in

structure or behaviour of one class affects another class, then there is a dependency
between those two classes.

- Dependency is represented by a dotted arrow where the arrowhead points to the
independent element.

- E.g.

- Examples of UML class diagrams:



UML Diagram Notes
9

- How to draw class diagrams:
1. Identify the objects in the problem and create classes for each of them
2. Add attributes
3. Add operations
4. Connect classes with relationships
5. Specify the multiplicities for association connections.

- Summary:
- Naming Convention:
1. Class name
- Use <<interface>> on top of interface names.
- To show that a class is abstract, either italicize the class name or put <<abstract>> on

top of the abstract class name.
2. Data members/Attributes
- The data members section of a class lists each of the class's data members on a

separate line.
- Each line uses this format: attributeName : type

E.g. name : String
- We must underline static attributes.
3. Methods/Operations
- The methods of a class are displayed in a list format, with each method on its own line.
- Each line uses this format:

methodName(param1: type1, param2: type2, ...) : returnType
E.g. distance(p1: Point, p2: Point) : Double

- We may omit setters and getters. However, don’t omit any methods from an interface.
- Furthermore, do not include inherited methods.
- We must underline static methods.
- Visibility:
- − means that it is private.
- + means that it is public.
- # means that it is protected.
- ∼ means that it is a package.
- / means that it is a derived attribute. A derived attribute is an attribute whose value is

produced or computed from other information.
- Note: Everything except / is common for both methods and attributes.
- Multiplicity:
- * means 0 or more.
- 1 means 1 exactly.
- 2..4 means 2 to 4, inclusive.
- 3..* means 3 or more.
- There are other relationships such as 1-to-1, 1-to-many, many-to-1 and many-to-many.



UML Diagram Notes
10

- Others:

Item Explanation Depiction

Generalization/inheritance

Realization

When a class extends another
class.

Generalization represents a
“IS-A” relationship.

When a class implements an
interface

For a class, draw a solid
line with a black arrow
pointing to the parent
class.

For an abstract class, draw
a solid line with a white
arrow pointing to the
parent abstract class.

For an interface, draw a
dashed line with a white
arrow pointing to the
interface.

Association Represents a relationship
between two classes.

It also defines the multiplicity
between objects.

A line between the classes
with an arrow indicating the
navigation direction.

Note: Sometimes,
association can be
represented just by a line
between the classes. This
means that information can
flow in both directions.

Aggregation A special type of association.
It is a weak type of
association.

Aggregation implies a
relationship where the child
class can exist independently
of the parent class. This
means that if you
remove/delete the parent
class, the child class still
exists.

I.e. Aggregation represents a
“HAS-A” or “PART-OF”
relationship.

An arrow with a clear white
diamond arrowhead
pointing to the parent
class.



UML Diagram Notes
11

Composition A special type of association.
Composition is considered as
a strong type of association.

It is a stronger version of
aggregation where if you
delete the parent class, then
all the child classes are also
deleted.

I.e. Composition represents a
“ENTIRELY MADE OF”
relationship.

An arrow with a black
diamond arrowhead pointing
to the parent class.

Dependency: Is a special type of
association.

Dependency indicates a
“uses” relationship between
two classes. If a change in
structure or behaviour of one
class affects another class,
then there is a dependency
between those two classes.

A dotted arrow where the
arrowhead points to the
independent element.

Object Diagram:
- Object diagrams look very similar to class diagrams.
- Naming Convention:

Object name: Type
Attribute: Value (Sometimes, it’s Attribute = Value)
E.g.

- Note: 2 different objects may have identical attribute values.
- Purpose:
- It is used to describe the static aspect of a system.
- It is used to represent an instance of a class.
- It can be used to perform forward and reverse engineering on systems.
- It is used to understand the behavior of an object.
- It can be used to explore the relations of an object and can be used to analyze other

connecting objects.



UML Diagram Notes
12

UML Packages:
- Introduction:
- A package is a namespace used to group together elements that are semantically

related and might change together. It is a general purpose mechanism to organize
elements into groups to provide a better structure for a system model.

- UML package diagrams are structural diagrams used to show the organization and
arrangement of various model elements in the form of packages. A package is a
grouping of related UML elements, such as diagrams, documents, classes, or even other
packages. Each element is nested within the package, which is depicted as a file folder,
and then is arranged hierarchically within the diagram. Package diagrams are most
commonly used to provide a visual organization of the layered architecture within any
UML classifier, such as a software system.

- Package diagrams are UML structure diagrams which show packages and
dependencies between the packages.
Note: Structure diagrams do not utilize time related concepts and do not show the
details of dynamic behavior.

- If a package is removed from a model, so are all the elements owned by the package.
- A package could also be a member of other packages.
- A package in the UML helps:
- To group elements.
- To provide a namespace for the grouped elements.
- Provide a hierarchical organization of packages.
- Benefits of UML package diagrams:
- They provide a clear view of the hierarchical structure of the various UML elements

within a given system.
- These diagrams can simplify complex class diagrams into well-ordered visuals.
- They offer valuable high-level visibility into large-scale projects and systems.
- Package diagrams can be used to visually clarify a wide variety of projects and systems.
- These visuals can be easily updated as systems and projects evolve.
- Terminology:
- Package: A namespace used to group together logically related elements within a

system. Each element contained within the package should be a packageable element
and have a unique name.

- Packageable element: A named element, possibly owned directly by a package. These
can include events, components, use cases, and packages themselves. Packageable
elements can also be rendered as a rectangle within a package, labeled with the
appropriate name.

- Dependencies: A visual representation of how one element or set of elements depends
on or influences another. Dependencies are divided into two groups: access and import
dependencies.

- Access dependency: Indicates that one package requires assistance from the functions
of another package.
I.e. One package requires help from functions of another package. (Making an API call
for example)

- Import dependency: Indicates that functionality has been imported from one package to
another.
I.e. One package imports the functionality of another package. (Importing a package)



UML Diagram Notes
13

- Notation:
- A package is rendered as a rectangle with a small tab attached to the left side of the top

of the rectangle. If the members of the package are not shown inside the package
rectangle, then the name of the package should be placed inside.
E.g.

- The members/elements of the package may be shown within the boundaries of the
package. If the names of the members of the package are shown, then the name of the
package should be placed on the tab.
E.g.

Here, Package org.hibernate contains SessionFactory and Session.
- More examples:

- To show a dependency between 2 packages, you draw a dotted arrow,

, between the 2 packages such that the arrow is pointing
to the independent package.



UML Diagram Notes
14

- To show an access dependency, write <<Access>> on the dotted arrow.
E.g.

- To show an import dependency, write <<Import>> on the dotted arrow.
E.g.

- Criteria for Decomposing a System into Packages:
- Different owners - who is responsible for working on which diagrams?
- Different applications - each problem has its own obvious partitions.
- Clusters of classes with strong cohesion - E.g. course, course description, instructor,

student, etc.
- Or: Use an architectural pattern to help find a suitable decomposition such as the MVC

Framework.
- Other Guidelines for Packages:
- Gather model elements with strong cohesion in one package.
- Keep model elements with low coupling in different packages.
- Minimize relationships, especially associations, between model elements in different

packages.
- Namespace implication: An element imported into a package does not know how it is

used in the imported package.
- We want to avoid dependency cycles.



UML Diagram Notes
15

- Summary:
Item & Example Description Depiction

Package A namespace used to group
together logically related
elements within a system.

Each element contained within
the package should be a
packageable element and have
a unique name.

A rectangle with a small tab
attached to the left side of the
top of the rectangle.

If the members of the package
are not shown inside the
package rectangle, then the
name of the package should be
placed inside.

Packageable element A named element, possibly
owned directly by a package.

These can include events,
components, use cases, and
packages themselves.

Packageable elements can also
be rendered as a rectangle
within a package, labeled with
the appropriate name.

Dependency A visual representation of how
one element or set of elements
depends on or influences
another.
Dependencies are divided into
two groups: access and import
dependencies.

To show a dependency
between 2 packages, you draw
a dotted arrow, between the 2
packages such that the arrow is
pointing to the independent
package.

Access dependency Indicates that one package
requires assistance from the
functions of another package.

To show an access
dependency, write <<Access>>
on the dotted arrow.

Import dependency Indicates that functionality has
been imported from one
package to another.

To show an import dependency,
write <<Import>> on the dotted
arrow.



UML Diagram Notes
16

Component Diagrams:
- Introduction:
- Component diagrams are used in modeling the physical aspects of object-oriented

systems that are used for visualizing, specifying, and documenting component-based
systems and also for constructing executable systems through forward and reverse
engineering.

- A component diagram breaks down the actual system under development into various
high levels of functionality.

- Each component is responsible for one clear aim within the entire system and only
interacts with other essential elements on a need-to-know basis.

- Component diagrams can help your team:
- Imagine the system’s physical structure.
- Pay attention to the system’s components and how they relate.
- Emphasize the service behavior as it relates to the interface.

- A component diagram gives a bird’s-eye view of your software system. Understanding
the exact service behavior that each piece of your software provides will make you a
better developer. Component diagrams can describe software systems that are
implemented in any programming language or style.

- Notation:
- Component: A rectangle with the component’s name, stereotype text, and icon. A

component represents a modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment.
E.g.

- Interface: There are 2 types of interfaces, provided interface and required interface.
Provided interface: A complete circle with a line connecting to a component. Provided
interfaces provide items to components.
Required Interface: A half circle with a line connecting to a component. Required
interfaces are used to provide required information to a provided interface.
E.g.

- Port: A square along the edge of the system or a component. A port is often used to
help expose required and provided interfaces of a component. Ports are used to hook up
other elements in a component diagram.
E.g.



UML Diagram Notes
17

- Association: An association specifies a relationship that can occur between two
instances. You represent an association using a straight line connecting 2 components.
E.g.

- Composition: Composition is a stronger form of aggregation that requires a part
instance to be included in at most one composite at a time. If a composite is deleted, all
of its parts are normally deleted with it. Composition is a type of association. You can
represent a composition using an arrow where the arrowhead is filled in and points to the
parent class.
E.g.

- Aggregation: Aggregation implies a relationship where the child class can exist
independently of the parent class. This means that if you remove/delete the parent class,
the child class still exists. It is a special type of association and a weak form of
association. You can represent an aggregation using an arrow where the arrowhead is
not filled in and points to the parent class.
E.g.

- Dependency: A dependency is a relationship that signifies that a single or a set of
model elements requires other model elements for their specification or implementation.
It is denoted as a dotted arrow with a circle at the tip of the arrow.
E.g.



UML Diagram Notes
18

- Summary:
Item & Example Description Depiction

Component A component represents a modular part
of a system that encapsulates its
contents and whose manifestation is
replaceable within its environment.

A rectangle with the
component’s name,
stereotype text, and
icon.

Provided interface

Required Interface

Provided interfaces provide items to
components.

Required interfaces are used to provide
required information to a provided
interface.

A complete circle with a
line connecting to a
component.

A half circle with a line
connecting to a
component.

Port A port is often used to help expose
required and provided interfaces of a
component. Ports are used to hook up
other elements in a component diagram.

A square along the
edge of the system or a
component.

Association An association specifies a relationship
that can occur between two instances.

A straight line
connecting 2
components.

Aggregation Aggregation implies a relationship where
the child class can exist independently
of the parent class.

It is a weak form of association.

An arrow where the
arrowhead is not filled in
and points to the parent
class.

Composition Composition is a stronger form of
aggregation that requires a part instance
to be included in at most one composite
at a time.

Composition is a type of association.

An arrow where the
arrowhead is filled in
and points to the parent
class.

Dependency A dependency is a relationship that
signifies that a single or a set of model
elements requires other model elements
for their specification or implementation.

It is denoted as a dotted
arrow with a circle at the
tip of the arrow.



UML Diagram Notes
19

Interaction Diagrams:
- Interaction diagrams describe how a group of objects collaborate in some behavior.

They commonly contain objects, links and messages.
- Objects communicate with each other through function/method calls called messages.
- An interaction is a set of messages exchanged among a set of objects in order to

accomplish a specific goal.
- Interaction diagrams:

- Are used to model the dynamic aspects of a system.
- Aid the developer in visualizing the system as it is running.
- Are storyboards of selected sequences of message traffic between objects.

- After class diagrams, interaction diagrams are possibly the most widely used UML
diagrams.

- A lifeline represents a single participant in an interaction. It describes how an instance
of a specific classifier participates in the interaction. A lifeline represents a role that an
instance of the classifier may play in the interaction.

- A message is the vehicle by which communication between objects is achieved. A
function/method call is the most common type of message. The return of data as a result
of a function call is also considered a message.

- A message may result in a change of state for the receiver of the message.
- The receipt of a message is considered an instance of an event.
- Interactions model the dynamic aspects of a system by showing the message traffic

between a group of objects. Showing the time-ordering of the message traffic is a central
ingredient of interactions.

- Graphically, a message is represented as a directed line that is labeled.
- The sequence diagram is the most commonly used UML interaction diagram. Typically

a sequence diagram captures the behavior of a group of objects in a single scenario.
- Interaction Frame Operators:

Operator Name Meaning

Opt Option An operand is executed if the condition is true. (E.g. If-else)

Alt Alternative The operand, whose condition is true, is executed. (E.g. Switch)

Loop Loop It is used to loop an instruction for a specified period.

Break Break It breaks the loop if a condition is true or false, and the next
instruction is executed.

Ref Reference It is used to refer to another interaction.

Par Parallel All operands are executed in parallel.

Region Critical Region Only 1 thread can execute this frame at a time.

Neg Negative Frame shows an invalid interaction.

Sd Sequence
Diagram (Optional) Used to surround the whole diagram.



UML Diagram Notes
20

- Parallel Example: The interaction operator par defines potentially parallel execution of
behaviors of the operands of the combined fragment. Different operands can be
interleaved in any way as long as the ordering imposed by each operand is preserved.

- Region Example: The interaction operator region defines that the combined fragment
represents a critical region. A critical region is a region with traces that cannot be
interleaved by other occurrence specifications on the lifelines covered by the region.

- Negative Example: The interaction operator neg describes a combined fragment of
traces that are defined to be negative (invalid). Negative traces are the traces which
occur when the system has failed. All interaction fragments that are different from the
negative are considered positive, meaning that they describe traces that are valid and
should be possible.



UML Diagram Notes
21

Sequence Diagrams:
- Introduction:
- A sequence diagram depicts interactions between objects in a sequential order. The

purpose of a sequence diagram in UML is to visualize the sequence of a message flow
in the system. The sequence diagram shows the interaction between two lifelines as a
time-ordered sequence of events.

- A sequence diagram shows an implementation of a scenario in the system. Lifelines in
the system take part during the execution of a system.

- In a sequence diagram, a lifeline is represented by a vertical bar.
- A message flow between two or more objects is represented using a vertical dotted line

which extends across the bottom of the page.
- Sequence diagrams are built around an X-Y axis.
- Objects are aligned at the top of the diagram, parallel to the X axis.
- Messages travel parallel to the X axis.
- Time passes from top to bottom along the Y axis.
- Sequence diagrams most commonly show relative timings, not absolute timings.
- Links between objects are implied by the existence of a message.
- Example of a sequence diagram:

- Example of a sequence diagram:



UML Diagram Notes
22

- Benefits of a sequence diagram:
- Sequence diagrams are used to explore any real application of a system.
- Sequence diagrams are used to represent the message flow from one object to another.
- Sequence diagrams are easy to maintain and generate.
- Sequence diagrams can be easily updated according to the changes within a system.
- Sequence diagrams allow both reverse and forward engineering.
- Drawbacks of a sequence diagram:
- Sequence diagrams can become complex when too many lifelines are involved in the

system.
- If the order of message sequence is changed, then incorrect results are produced.
- Each sequence needs to be represented using different message notation, which can be

a little complex.
- The type of message decides the type of sequence inside the diagram.
- When to use sequence diagrams:

1. Comparing Design Options:
- Shows how objects collaborate to carry out a task.
- Graphical form shows alternative behaviours.

2. Assessing Bottlenecks
3. Explaining Design Patterns:

- Enhances structural models.
- Good for documenting behaviour of design features.

4. Elaborating Use Cases:
- Shows how the user expects to interact with the system.
- Shows how the user interface operates.

- Modelling Control Flow By Time:
- Determine what scenarios need to be modeled.
- Identify the objects that play a role in the scenario.
- Lay the objects out in a sequence diagram left to right, with the most important objects

on the left.
Most important in this context means objects that are the principle initiators of events.

- Draw in the message arrows, top to bottom.
Adorn the message as needed with detailed timing information.

- Style Guide for Sequence Diagrams:
1. Spatial Layout:

- Strive for left-to-right ordering of messages.
- Put proactive actors on the left.
- Put reactive actors on the right.

2. Readability:
- Keep diagrams simple.
- Don’t show obvious return values.
- Don’t show object destruction.

3. Usage:
- Focus on critical interactions only.

4. Consistency:
- Class names must be consistent with class diagram.
- Message routes must be consistent with navigable class associations.



UML Diagram Notes
23

- Summary:
Item & Example Description Depiction

Lifeline A lifeline represents an individual participant in
the interaction.

Lifelines represent the passage of time as it
extends downward.

The dashed vertical line shows the sequential
events that occur to an object during the charted
process.

A labeled rectangle shape with a
dotted line extending from its
bottom.

Activation box Represents the time needed for an object to
complete a task. The longer the task will take,
the longer the activation box becomes.

A thin rectangle on a lifeline.

The top and the bottom of the
rectangle are aligned with the
initiation and the
completion time
respectively.

Message A message defines a particular communication
between lifelines.

A solid line with a solid arrowhead.

Asynchronous
Message

Asynchronous messages don't require a
response before the sender continues. Only the
call should be included in the diagram.

A solid line with a lined arrowhead.

Reply Message A return message is a kind of message that
represents the pass of information back to the
caller of a corresponded former message.

A dashed line with a lined
arrowhead.

Self Message A self message is a kind of message that
represents the invocation of a message of the
same lifeline.

A solid line with a lined arrowhead
pointing to the same lifeline that it
originated from.



UML Diagram Notes
24

Use Case Diagrams:
- Introduction:
- A use case diagram is the primary form of system/software requirements for a new

software program.
- Use cases specify the expected behavior (what), and not the exact method of making it

happen (how).
- A key concept of use case modeling is that it helps us design a system from the end

user's perspective. It is an effective technique for communicating a system’s behavior in
the user's terms.

- Use case diagrams are used to gather the requirements of a system including internal
and external influences.

- A use case:
- Specifies the behavior of a system or some subset of a system.
- Is a set of scenarios tied together by a common user goal.
- Does not indicate how the specified behavior is implemented, only what the

behavior is.
- Performs a service for some user of the system, called an actor.

- A use case represents a functional requirement of the system. A requirement:
- Is a design feature, property, or behavior of a system.
- States what needs to be done, but not how it is to be done.
- Is a contract between the customer and the developer.
- Can be expressed in various forms, including use cases.

- In brief, the purposes of use case diagrams are as follows:
- Used to gather the requirements of a system.
- Used to get an outside view of a system.
- Identify the external and internal factors influencing the system.
- Show the interaction among the requirements of the actors.

- An actor:
- Is a role that the user plays with respect to the system. The user does not have to

be human.
- Is associated with one or more use cases.
- Is most typically represented as a stick figure of a person labeled with its role

name. Note that the role names should be nouns.
- May exist in a generalization relationship with other actors in the same way as

classes may maintain a generalization relationship with other classes.
- Note: Use cases diagrams do not show the order in which the steps are performed to

achieve the goals of each use case. It only shows the relationship between actors,
systems and use cases.

- Use cases are a technique for capturing the functional requirements of a system. Use
cases work by describing the typical interactions between the users of a system and the
system itself, providing a narrative of how the system is used.

- Use case development process:
1. Develop multiple scenarios.
2. Distill the scenarios into one or more use cases where each use case represents

a functional requirement.
3. Establish associations between the use cases and actors.

- A use case is graphically represented as an oval with the name of its functionality written
inside. The functionality is always expressed as a verb or a verb phrase.

- A use case may exist in relationships with other use cases much in the same way as
classes maintain relationships with other classes.



UML Diagram Notes
25

- As stated earlier, a use case by itself does not describe the flow of events needed to
carry out the use case. The flow of events can be described using informal text,
pseudocode, or activity diagrams.
I.e. You can attach a note to a use case to show the flow of the event. Be sure to
address exception handling when describing the flow of events.
E.g.

- Relationships Between Use Cases:
- A use case may have a relationship with other use cases.
- Generalization between use cases is used to extend the behavior of a parent use case.
- An <<include>> relationship between use cases means that the base use case

explicitly incorporates the behavior of another use case at a location specified in the
base.
Note: Sometimes <<uses>> is used instead of <<include>>.
When a use case is depicted as using the functionality of another use case, the
relationship between the use cases is named as an <<include>> or <<uses>>
relationship.

- An <<extend>> relationship between use cases means that the base use case
implicitly incorporates the behavior of another use case at a location specified indirectly
by the extending use case.

- Extended behavior is optional behavior, while included behavior is required behavior.
I.e. Extended means “may use” while include/uses means “will use”.

- Extend occurs when one use case adds a behaviour to a base use case while include
occurs when one use case invokes another.

- Actor Classes:
- Identify classes of actors.
- Actors inherit use cases from the class.



UML Diagram Notes
26

- Describing Use Cases:
- For each use case, a flow of events document, written from the actor’s point of view,

describes what the system must provide to the actor when the use case is executed.
- Typical contents:

- How the use case starts and ends.
- Normal flow of events.
- Alternate flow of events.
- Exceptional flow of events.

- Documentation style:
- Activity Diagrams - Good for business process.
- Collaboration Diagrams - Good for high level design.
- Sequence Diagrams - Good for detailed design.

- Finding Use Cases:
- Noun phrases may be domain classes.
- Verb phrases may be operations and associations.
- Possessive phrases may indicate attributes.
- For each actor, ask the following questions:

1. What functions does the actor require from the system?
2. What does the actor need to do?
3. Does the actor need to read, create, destroy, modify or store information in the

system?
4. Does the actor have to be notified about events in the system?
5. Does the actor need to notify the system about something?
6. What do these events require in terms of system functionality?
7. Could the actor’s daily work be simplified or made more efficient through new

functions provided by the system?
- Summary:

Item & Example Description Depiction

Actors Is a role that the user plays with respect to
the system. The user does not have to be
human.

A stick figure.

Use Case Represents a functional requirement of the
system.

It specifies the behavior of a system or
some subset of a system.

It is a set of scenarios tied together by a
common user goal.

It does not indicate how the specified
behavior is implemented, only what the
behavior is.

An oval



UML Diagram Notes
27

Association Shows which actors use which use cases. A line connecting an actor to a use
case.

System Boundary Box The system boundary is potentially the
entire system as defined in the requirements
document.

It is a box that sets a system scope to use
cases. All use cases outside the box would
be considered outside the scope of that
system.

For large and complex systems, each
module may be the system boundary.

A blue box containing all the
relevant use cases.

<<include>>/<<uses>>
relationship

An <<include>>/<<uses>> relationship
between use cases means that the base
use case explicitly incorporates the behavior
of another use case at a location specified in
the base.

A dotted line with a lined
arrowhead originating from a use
case pointing to the used use
case.

It has <<includes>> or <<uses>>
written on the arrow.

<<extend>> relationship An <<extend>> relationship between use
cases means that the base use case
implicitly incorporates the behavior of
another use case at a location specified
indirectly by the extending use case.

A dotted line with a lined
arrowhead originating from a use
case pointing to the used use
case.

It has <<extends>> written on the
arrow.


